
Chapter

7
Generalized Estimating Equations

The Generalized Estimating Equations procedure extends the generalized linear model
to allow for analysis of repeated measurements or other correlated observations, such
as clustered data.

Example. Public health of cials can use generalized estimating equations to t a
repeated measures logistic regression to study effects of air pollution on children.

Data. The response can be scale, counts, binary, or events-in-trials. Factors are
assumed to be categorical. The covariates, scale weight, and offset are assumed to
be scale. Variables used to de ne subjects or within-subject repeated measurements
cannot be used to de ne the response but can serve other roles in the model.

Assumptions. Cases are assumed to be dependent within subjects and independent
between subjects. The correlation matrix that represents the within-subject
dependencies is estimated as part of the model.

Obtaining Generalized Estimating Equations

From the menus choose:
Analyze

Generalized Linear Models
Generalized Estimating Equations...
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Figure 7-1
Generalized Estimating Equations: Repeated tab

E Select one or more subject variables (see below for further options).

The combination of values of the speci ed variables should uniquely de ne subjects
within the dataset. For example, a single Patient ID variable should be suf cient to
de ne subjects in a single hospital, but the combination of Hospital ID and Patient ID
may be necessary if patient identi cation numbers are not unique across hospitals. In
a repeated measures setting, multiple observations are recorded for each subject, so
each subject may occupy multiple cases in the dataset.

E On the Type of Model tab, specify a distribution and link function.
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E On the Response tab, select a dependent variable.

E On the Predictors tab, select factors and covariates for use in predicting the dependent
variable.

E On the Model tab, specify model effects using the selected factors and covariates.

Optionally, on the Repeated tab you can specify:

Within-subject variables. The combination of values of the within-subject variables
de nes the ordering of measurements within subjects; thus, the combination of
within-subject and subject variables uniquely de nes each measurement. For example,
the combination of Period, Hospital ID, and Patient ID de nes, for each case, a
particular of ce visit for a particular patient within a particular hospital.
If the dataset is already sorted so that each subject’s repeated measurements occur

in a contiguous block of cases and in the proper order, it is not strictly necessary
to specify a within-subjects variable, and you can deselect Sort cases by subject

and within-subject variables and save the processing time required to perform the
(temporary) sort. Generally, it’s a good idea to make use of within-subject variables to
ensure proper ordering of measurements.

Subject and within-subject variables cannot be used to de ne the response, but they
can perform other functions in the model. For example, Hospital ID could be used
as a factor in the model.

Covariance Matrix. The model-based estimator is the negative of the generalized inverse
of the Hessian matrix. The robust estimator (also called the Huber/White/sandwich
estimator) is a “corrected” model-based estimator that provides a consistent estimate
of the covariance, even when the working correlation matrix is misspeci ed. This
speci cation applies to the parameters in the linear model part of the generalized
estimating equations, while the speci cation on the Estimation tab applies only to the
initial generalized linear model.

Working Correlation Matrix. This correlation matrix represents the within-subject
dependencies. Its size is determined by the number of measurements and thus
the combination of values of within-subject variables. You can specify one of the
following structures:

Independent. Repeated measurements are uncorrelated.
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AR(1). Repeated measurements have a rst-order autoregressive relationship. The
correlation between any two elements is equal to for adjacent elements, 2 for
elements that are separated by a third, and so on. is constrained so that –1< <1.
Exchangeable. This structure has homogenous correlations between elements. It is
also known as a compound symmetry structure.
M-dependent. Consecutive measurements have a common correlation coef cient,
pairs of measurements separated by a third have a common correlation coef cient,
and so on, through pairs of measurements separated by m 1 other measurements.
Measurements with greater separation are assumed to be uncorrelated. When
choosing this structure, specify a value of m less than the order of the working
correlation matrix.
Unstructured. This is a completely general correlation matrix.

By default, the procedure will adjust the correlation estimates by the number of
nonredundant parameters. Removing this adjustment may be desirable if you want the
estimates to be invariant to subject-level replication changes in the data.

Maximum iterations. The maximum number of iterations the generalized
estimating equations algorithm will execute. Specify a non-negative integer. This
speci cation applies to the parameters in the linear model part of the generalized
estimating equations, while the speci cation on the Estimation tab applies only
to the initial generalized linear model.
Update matrix. Elements in the working correlation matrix are estimated based on
the parameter estimates, which are updated in each iteration of the algorithm. If
the working correlation matrix is not updated at all, the initial working correlation
matrix is used throughout the estimation process. If the matrix is updated, you
can specify the iteration interval at which to update working correlation matrix
elements. Specifying a value greater than 1 may reduce processing time.

Convergence criteria. These speci cations apply to the parameters in the linear model
part of the generalized estimating equations, while the speci cation on the Estimation
tab applies only to the initial generalized linear model.

Parameter convergence. When selected, the algorithm stops after an iteration in
which the absolute or relative change in the parameter estimates is less than the
value speci ed, which must be positive.
Hessian convergence. Convergence is assumed if a statistic based on the Hessian is
less than the value speci ed, which must be positive.
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Generalized Estimating Equations Type of Model
Figure 7-2
Generalized Estimating Equations: Type of Model tab

The Type of Model tab allows you to specify the distribution and link function for
your model, providing shortcuts for several common models that are categorized
by response type.



99

Generalized Estimating Equations

Model Types

Scale Response.

Linear. Speci es Normal as the distribution and Identity as the link function.
Gamma with log link. Speci es Gamma as the distribution and Log as the link
function.

Ordinal Response.

Ordinal logistic. Speci es Multinomial (ordinal) as the distribution and Cumulative
logit as the link function.
Ordinal probit. Speci es Multinomial (ordinal) as the distribution and Cumulative
probit as the link function.

Counts.

Poisson loglinear. Speci es Poisson as the distribution and Log as the link function.
Negative binomial with log link. Speci es Negative binomial (with a value of
1 for the ancillary parameter) as the distribution and Log as the link function.
To have the procedure estimate the value of the ancillary parameter, specify a
custom model with Negative binomial distribution and select Estimate value in the
Parameter group.

Binary Response or Events/Trials Data.

Binary logistic. Speci es Binomial as the distribution and Logit as the link function.
Binary probit. Speci es Binomial as the distribution and Probit as the link function.
Interval censored survival. Speci es Binomial as the distribution and
Complementary log-log as the link function.

Mixture.

Tweedie with log link. Speci es Tweedie as the distribution and Log as the link
function.
Tweedie with identity link. Speci es Tweedie as the distribution and Identity as
the link function.

Custom. Specify your own combination of distribution and link function.
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Distribution

This selection speci es the distribution of the dependent variable. The ability to specify
a non-normal distribution and non-identity link function is the essential improvement
of the generalized linear model over the general linear model. There are many possible
distribution-link function combinations, and several may be appropriate for any given
dataset, so your choice can be guided by a priori theoretical considerations or which
combination seems to t best.

Binomial. This distribution is appropriate only for variables that represent a binary
response or number of events.
Gamma. This distribution is appropriate for variables with positive scale values
that are skewed toward larger positive values. If a data value is less than or equal
to 0 or is missing, then the corresponding case is not used in the analysis.
Inverse Gaussian. This distribution is appropriate for variables with positive scale
values that are skewed toward larger positive values. If a data value is less than or
equal to 0 or is missing, then the corresponding case is not used in the analysis.
Multinomial. This distribution is appropriate for variables that represent an ordinal
response. The dependent variable can be numeric or string, and it must have at
least two distinct valid data values.
Negative binomial. This distribution can be thought of as the number of trials
required to observe k successes and is appropriate for variables with non-negative
integer values. If a data value is non-integer, less than 0, or missing, then the
corresponding case is not used in the analysis. The value of the negative binomial
distribution’s ancillary parameter can be any number greater than or equal to 0;
you can set it to a xed value or allow it to be estimated by the procedure. When
the ancillary parameter is set to 0, using this distribution is equivalent to using
the Poisson distribution.
Normal. This is appropriate for scale variables whose values take a symmetric,
bell-shaped distribution about a central (mean) value. The dependent variable
must be numeric.
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Poisson. This distribution can be thought of as the number of occurrences of an
event of interest in a xed period of time and is appropriate for variables with
non-negative integer values. If a data value is non-integer, less than 0, or missing,
then the corresponding case is not used in the analysis.
Tweedie. This distribution is appropriate for variables that can be represented
by Poisson mixtures of gamma distributions; the distribution is “mixed” in the
sense that it combines properties of continuous (takes non-negative real values)
and discrete distributions (positive probability mass at a single value, 0). The
dependent variable must be numeric, with data values greater than or equal to
zero. If a data value is less than zero or missing, then the corresponding case is
not used in the analysis. The xed value of the Tweedie distribution’s parameter
can be any number greater than one and less than two.

Link Function

The link function is a transformation of the dependent variable that allows estimation
of the model. The following functions are available:

Identity. f(x)=x. The dependent variable is not transformed. This link can be used
with any distribution.
Complementary log-log. f(x)=log( log(1 x)). This is appropriate only with the
binomial distribution.
Cumulative Cauchit. f(x) = tan( (x – 0.5)), applied to the cumulative probability
of each category of the response. This is appropriate only with the multinomial
distribution.
Cumulative complementary log-log. f(x)=ln( ln(1 x)), applied to the cumulative
probability of each category of the response. This is appropriate only with the
multinomial distribution.
Cumulative logit. f(x)=ln(x / (1 x)), applied to the cumulative probability of
each category of the response. This is appropriate only with the multinomial
distribution.
Cumulative negative log-log. f(x)= ln( ln(x)), applied to the cumulative probability
of each category of the response. This is appropriate only with the multinomial
distribution.
Cumulative probit. f(x)= 1(x), applied to the cumulative probability of each
category of the response, where 1 is the inverse standard normal cumulative
distribution function. This is appropriate only with the multinomial distribution.
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Log. f(x)=log(x). This link can be used with any distribution.
Log complement. f(x)=log(1 x). This is appropriate only with the binomial
distribution.
Logit. f(x)=log(x / (1 x)). This is appropriate only with the binomial distribution.
Negative binomial. f(x)=log(x / (x+k 1)), where k is the ancillary parameter of
the negative binomial distribution. This is appropriate only with the negative
binomial distribution.
Negative log-log. f(x)= log( log(x)). This is appropriate only with the binomial
distribution.
Odds power. f(x)=[(x/(1 x)) 1]/ , if 0. f(x)=log(x), if =0. is the required
number speci cation and must be a real number. This is appropriate only with the
binomial distribution.
Probit. f(x)= 1(x), where 1 is the inverse standard normal cumulative
distribution function. This is appropriate only with the binomial distribution.
Power. f(x)=x , if 0. f(x)=log(x), if =0. is the required number speci cation
and must be a real number. This link can be used with any distribution.
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Generalized Estimating Equations Response
Figure 7-3
Generalized Estimating Equations: Response tab

In many cases, you can simply specify a dependent variable; however, variables that
take only two values and responses that record events in trials require extra attention.
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Binary response. When the dependent variable takes only two values, you can
specify the reference category for parameter estimation. A binary response
variable can be string or numeric.
Number of events occurring in a set of trials. When the response is a number of
events occurring in a set of trials, the dependent variable contains the number of
events and you can select an additional variable containing the number of trials.
Alternatively, if the number of trials is the same across all subjects, then trials
may be speci ed using a xed value. The number of trials should be greater than
or equal to the number of events for each case. Events should be non-negative
integers, and trials should be positive integers.

For ordinal multinomial models, you can specify the category order of the response:
ascending, descending, or data (data order means that the rst value encountered in the
data de nes the rst category, the last value encountered de nes the last category).

Scale Weight. The scale parameter is an estimated model parameter related to the
variance of the response. The scale weights are “known” values that can vary
from observation to observation. If the scale weight variable is speci ed, the scale
parameter, which is related to the variance of the response, is divided by it for each
observation. Cases with scale weight values that are less than or equal to 0 or are
missing are not used in the analysis.
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Generalized Estimating Equations Reference Category
Figure 7-4
Generalized Estimating Equations Reference Category dialog box

For binary response, you can choose the reference category for the dependent variable.
This can affect certain output, such as parameter estimates and saved values, but it
should not change the model t. For example, if your binary response takes values
0 and 1:

By default, the procedure makes the last (highest-valued) category, or 1, the
reference category. In this situation, model-saved probabilities estimate the chance
that a given case takes the value 0, and parameter estimates should be interpreted
as relating to the likelihood of category 0.
If you specify the rst (lowest-valued) category, or 0, as the reference category, then
model-saved probabilities estimate the chance that a given case takes the value 1.
If you specify the custom category and your variable has de ned labels, you can set
the reference category by choosing a value from the list. This can be convenient
when, in the middle of specifying a model, you don’t remember exactly how a
particular variable was coded.
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Generalized Estimating Equations Predictors
Figure 7-5
Generalized Estimating Equations: Predictors tab

The Predictors tab allows you to specify the factors and covariates used to build model
effects and to specify an optional offset.

Factors. Factors are categorical predictors; they can be numeric or string.

Covariates. Covariates are scale predictors; they must be numeric.
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Note: When the response is binomial with binary format, the procedure computes
deviance and chi-square goodness-of- t statistics by subpopulations that are based on
the cross-classi cation of observed values of the selected factors and covariates. You
should keep the same set of predictors across multiple runs of the procedure to ensure
a consistent number of subpopulations.

Offset. The offset term is a “structural” predictor. Its coef cient is not estimated by
the model but is assumed to have the value 1; thus, the values of the offset are simply
added to the linear predictor of the dependent variable. This is especially useful in
Poisson regression models, where each case may have different levels of exposure to
the event of interest. For example, when modeling accident rates for individual drivers,
there is an important difference between a driver who has been at fault in one accident
in three years of experience and a driver who has been at fault in one accident in 25
years! The number of accidents can be modeled as a Poisson response if the experience
of the driver is included as an offset term.
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Generalized Estimating Equations Options

Figure 7-6
Generalized Estimating Equations Options dialog box

These options are applied to all factors speci ed on the Predictors tab.

User-Missing Values. Factors must have valid values for a case to be included in the
analysis. These controls allow you to decide whether user-missing values are treated
as valid among factor variables.

Category Order. This is relevant for determining a factor’s last level, which may be
associated with a redundant parameter in the estimation algorithm. Changing the
category order can change the values of factor-level effects, since these parameter
estimates are calculated relative to the “last” level. Factors can be sorted in ascending
order from lowest to highest value, in descending order from highest to lowest value,
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or in “data order.” This means that the rst value encountered in the data de nes the
rst category, and the last unique value encountered de nes the last category.

Generalized Estimating Equations Model
Figure 7-7
Generalized Estimating Equations: Model tab

Specify Model Effects. The default model is intercept-only, so you must explicitly
specify other model effects. Alternatively, you can build nested or non-nested terms.
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Non-Nested Terms

For the selected factors and covariates:

Main effects. Creates a main-effects term for each variable selected.

Interaction. Creates the highest-level interaction term for all selected variables.

Factorial. Creates all possible interactions and main effects of the selected variables.

All 2-way. Creates all possible two-way interactions of the selected variables.

All 3-way. Creates all possible three-way interactions of the selected variables.

All 4-way. Creates all possible four-way interactions of the selected variables.

All 5-way. Creates all possible ve-way interactions of the selected variables.

Nested Terms

You can build nested terms for your model in this procedure. Nested terms are useful
for modeling the effect of a factor or covariate whose values do not interact with the
levels of another factor. For example, a grocery store chain may follow the spending
habits of its customers at several store locations. Since each customer frequents only
one of these locations, the Customer effect can be said to be nested within the Store
location effect.
Additionally, you can include interaction effects or add multiple levels of nesting

to the nested term.

Limitations. Nested terms have the following restrictions:
All factors within an interaction must be unique. Thus, if A is a factor, then
specifying A*A is invalid.
All factors within a nested effect must be unique. Thus, if A is a factor, then
specifying A(A) is invalid.
No effect can be nested within a covariate. Thus, if A is a factor and X is a
covariate, then specifying A(X) is invalid.

Intercept. The intercept is usually included in the model. If you can assume the data
pass through the origin, you can exclude the intercept.
Models with the multinomial ordinal distribution do not have a single intercept

term; instead there are threshold parameters that de ne transition points between
adjacent categories. The thresholds are always included in the model.
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Generalized Estimating Equations Estimation
Figure 7-8
Generalized Estimating Equations: Estimation tab

Parameter Estimation. The controls in this group allow you to specify estimation
methods and to provide initial values for the parameter estimates.

Method. You can select a parameter estimation method; choose between
Newton-Raphson, Fisher scoring, or a hybrid method in which Fisher scoring
iterations are performed before switching to the Newton-Raphson method. If
convergence is achieved during the Fisher scoring phase of the hybrid method
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before the maximum number of Fisher iterations is reached, the algorithm
continues with the Newton-Raphson method.
Scale Parameter Method. You can select the scale parameter estimation method.
Maximum-likelihood jointly estimates the scale parameter with the model effects;
note that this option is not valid if the response has a negative binomial, Poisson,
or binomial distribution. Since the concept of likelihood does not enter into
generalized estimating equations, this speci cation applies only to the initial
generalized linear model; this scale parameter estimate is then passed to the
generalized estimating equations, which update the scale parameter by the Pearson
chi-square divided by its degrees of freedom.
The deviance and Pearson chi-square options estimate the scale parameter from the
value of those statistics in the initial generalized linear model; this scale parameter
estimate is then passed to the generalized estimating equations, which treat it
as xed.
Alternatively, specify a xed value for the scale parameter. It will be treated
as xed in estimating the initial generalized linear model and the generalized
estimating equations.
Initial values. The procedure will automatically compute initial values for
parameters. Alternatively, you can specify initial values for the parameter
estimates.

The iterations and convergence criteria speci ed on this tab are applicable only to the
initial generalized linear model. For estimation criteria used in tting the generalized
estimating equations, see the Repeated tab.

Iterations.

Maximum iterations. The maximum number of iterations the algorithm will
execute. Specify a non-negative integer.
Maximum step-halving. At each iteration, the step size is reduced by a factor of 0.5
until the log-likelihood increases or maximum step-halving is reached. Specify
a positive integer.
Check for separation of data points. When selected, the algorithm performs tests to
ensure that the parameter estimates have unique values. Separation occurs when
the procedure can produce a model that correctly classi es every case. This option
is available for multinomial responses and binomial responses with binary format.
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Convergence Criteria.

Parameter convergence. When selected, the algorithm stops after an iteration in
which the absolute or relative change in the parameter estimates is less than the
value speci ed, which must be positive.
Log-likelihood convergence. When selected, the algorithm stops after an iteration in
which the absolute or relative change in the log-likelihood function is less than the
value speci ed, which must be positive.
Hessian convergence. For the Absolute speci cation, convergence is assumed
if a statistic based on the Hessian convergence is less than the positive value
speci ed. For the Relative speci cation, convergence is assumed if the statistic
is less than the product of the positive value speci ed and the absolute value of
the log-likelihood.

Singularity tolerance. Singular (or non-invertible) matrices have linearly dependent
columns, which can cause serious problems for the estimation algorithm. Even
near-singular matrices can lead to poor results, so the procedure will treat a matrix
whose determinant is less than the tolerance as singular. Specify a positive value.

Generalized Estimating Equations Initial Values

The procedure estimates an initial generalized linear model, and the estimates from
this model are used as initial values for the parameter estimates in the linear model
part of the generalized estimating equations. Initial values are not needed for the
working correlation matrix because matrix elements are based on the parameter
estimates. Initial values speci ed on this dialog box are used as the starting point for
the initial generalized linear model, not the generalized estimating equations, unless
the Maximum iterations on the Estimation tab is set to 0.
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Figure 7-9
Generalized Estimating Equations Initial Values dialog box

If initial values are speci ed, they must be supplied for all parameters (including
redundant parameters) in the model. In the dataset, the ordering of variables from left
to right must be: RowType_, VarName_, P1, P2, …, where RowType_ and VarName_
are string variables and P1, P2, … are numeric variables corresponding to an ordered
list of the parameters.

Initial values are supplied on a record with value EST for variable RowType_; the
actual initial values are given under variables P1, P2, …. The procedure ignores
all records for which RowType_ has a value other than EST as well as any records
beyond the rst occurrence of RowType_ equal to EST.
The intercept, if included in the model, or threshold parameters, if the response has
a multinomial distribution, must be the rst initial values listed.
The scale parameter and, if the response has a negative binomial distribution, the
negative binomial parameter, must be the last initial values speci ed.
If Split File is in effect, then the variables must begin with the split- le variable
or variables in the order speci ed when creating the Split File, followed by
RowType_, VarName_, P1, P2, … as above. Splits must occur in the speci ed
dataset in the same order as in the original dataset.

Note: The variable names P1, P2, … are not required; the procedure will accept
any valid variable names for the parameters because the mapping of variables to
parameters is based on variable position, not variable name. Any variables beyond
the last parameter are ignored.
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The le structure for the initial values is the same as that used when exporting the
model as data; thus, you can use the nal values from one run of the procedure as
input in a subsequent run.

Generalized Estimating Equations Statistics
Figure 7-10
Generalized Estimating Equations: Statistics tab

Model Effects.
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Analysis type. Specify the type of analysis to produce for testing model effects.
Type I analysis is generally appropriate when you have a priori reasons for
ordering predictors in the model, while Type III is more generally applicable.
Wald or generalized score statistics are computed based upon the selection in the
Chi-Square Statistics group.
Confidence intervals. Specify a con dence level greater than 50 and less than 100.
Wald intervals are always produced regardless of the type of chi-square statistics
selected, and are based on the assumption that parameters have an asymptotic
normal distribution.
Log quasi-likelihood function. This controls the display format of the log
quasi-likelihood function. The full function includes an additional term that is
constant with respect to the parameter estimates; it has no effect on parameter
estimation and is left out of the display in some software products.

Print. The following output is available.
Case processing summary. Displays the number and percentage of cases included
and excluded from the analysis and the Correlated Data Summary table.
Descriptive statistics. Displays descriptive statistics and summary information
about the dependent variable, covariates, and factors.
Model information. Displays the dataset name, dependent variable or events and
trials variables, offset variable, scale weight variable, probability distribution,
and link function.
Goodness of fit statistics. Displays two extensions of Akaike’s Information
Criterion for model selection: Quasi-likelihood under the independence model
criterion (QIC) for choosing the best correlation structure and another QIC
measure for choosing the best subset of predictors.
Model summary statistics. Displays model t tests, including likelihood-ratio
statistics for the model t omnibus test and statistics for the Type I or III contrasts
for each effect.
Parameter estimates. Displays parameter estimates and corresponding test statistics
and con dence intervals. You can optionally display exponentiated parameter
estimates in addition to the raw parameter estimates.
Covariance matrix for parameter estimates. Displays the estimated parameter
covariance matrix.
Correlation matrix for parameter estimates. Displays the estimated parameter
correlation matrix.
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Contrast coefficient (L) matrices. Displays contrast coef cients for the default
effects and for the estimated marginal means, if requested on the EM Means tab.
General estimable functions. Displays the matrices for generating the contrast
coef cient (L) matrices.
Iteration history. Displays the iteration history for the parameter estimates and
log-likelihood and prints the last evaluation of the gradient vector and the Hessian
matrix. The iteration history table displays parameter estimates for every nth
iterations beginning with the 0th iteration (the initial estimates), where n is the
value of the print interval. If the iteration history is requested, then the last
iteration is always displayed regardless of n.
Working correlation matrix. Displays the values of the matrix representing the
within-subject dependencies. Its structure depends upon the speci cations in the
Repeated tab.
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Generalized Estimating Equations EM Means
Figure 7-11
Generalized Estimating Equations: EM Means tab

This tab allows you to display the estimated marginal means for levels of factors and
factor interactions. You can also request that the overall estimated mean be displayed.
Estimated marginal means are not available for ordinal multinomial models.
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Factors and Interactions. This list contains factors speci ed on the Predictors tab and
factor interactions speci ed on the Model tab. Covariates are excluded from this list.
Terms can be selected directly from this list or combined into an interaction term
using the By * button.

Display Means For. Estimated means are computed for the selected factors and factor
interactions. The contrast determines how hypothesis tests are set up to compare the
estimated means. The simple contrast requires a reference category or factor level
against which the others are compared.

Pairwise. Pairwise comparisons are computed for all-level combinations of
the speci ed or implied factors. This is the only available contrast for factor
interactions.
Simple. Compares the mean of each level to the mean of a speci ed level. This
type of contrast is useful when there is a control group.
Deviation. Each level of the factor is compared to the grand mean. Deviation
contrasts are not orthogonal.
Difference. Compares the mean of each level (except the rst) to the mean of
previous levels. They are sometimes called reverse Helmert contrasts.
Helmert. Compares the mean of each level of the factor (except the last) to the
mean of subsequent levels.
Repeated. Compares the mean of each level (except the last) to the mean of the
subsequent level.
Polynomial. Compares the linear effect, quadratic effect, cubic effect, and so on.
The rst degree of freedom contains the linear effect across all categories; the
second degree of freedom, the quadratic effect; and so on. These contrasts are
often used to estimate polynomial trends.

Scale. Estimated marginal means can be computed for the response, based on the
original scale of the dependent variable, or for the linear predictor, based on the
dependent variable as transformed by the link function.

Adjustment for Multiple Comparisons. When performing hypothesis tests with multiple
contrasts, the overall signi cance level can be adjusted from the signi cance levels for
the included contrasts. This group allows you to choose the adjustment method.
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Least significant difference. This method does not control the overall probability
of rejecting the hypotheses that some linear contrasts are different from the null
hypothesis values.
Bonferroni. This method adjusts the observed signi cance level for the fact that
multiple contrasts are being tested.
Sequential Bonferroni. This is a sequentially step-down rejective Bonferroni
procedure that is much less conservative in terms of rejecting individual
hypotheses but maintains the same overall signi cance level.
Sidak. This method provides tighter bounds than the Bonferroni approach.
Sequential Sidak. This is a sequentially step-down rejective Sidak procedure that is
much less conservative in terms of rejecting individual hypotheses but maintains
the same overall signi cance level.
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Generalized Estimating Equations Save
Figure 7-12
Generalized Estimating Equations: Save tab

Checked items are saved with the speci ed name; you can choose to overwrite existing
variables with the same name as the new variables or avoid name con icts by appendix
suf xes to make the new variable names unique.

Predicted value of mean of response. Saves model-predicted values for each case
in the original response metric. When the response distribution is binomial and
the dependent variable is binary, the procedure saves predicted probabilities.
When the response distribution is multinomial, the item label becomes Cumulative
predicted probability, and the procedure saves the cumulative predicted probability
for each category of the response, except the last, up to the number of speci ed
categories to save.
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Lower bound of confidence interval for mean of response. Saves the lower bound
of the con dence interval for the mean of the response. When the response
distribution is multinomial, the item label becomes Lower bound of confidence
interval for cumulative predicted probability, and the procedure saves the lower bound
for each category of the response, except the last, up to the number of speci ed
categories to save.
Upper bound of confidence interval for mean of response. Saves the upper bound
of the con dence interval for the mean of the response. When the response
distribution is multinomial, the item label becomes Upper bound of confidence
interval for cumulative predicted probability, and the procedure saves the upper bound
for each category of the response, except the last, up to the number of speci ed
categories to save.
Predicted category. For models with binomial distribution and binary dependent
variable, or multinomial distribution, this saves the predicted response category
for each case. This option is not available for other response distributions.
Predicted value of linear predictor. Saves model-predicted values for each case in
the metric of the linear predictor (transformed response via the speci ed link
function). When the response distribution is multinomial, the procedure saves
the predicted value for each category of the response, except the last, up to the
number of speci ed categories to save.
Estimated standard error of predicted value of linear predictor. When the response
distribution is multinomial, the procedure saves the estimated standard error for
each category of the response, except the last, up to the number of speci ed
categories to save.

The following items are not available when the response distribution is multinomial.
Raw residual. The difference between an observed value and the value predicted
by the model.
Pearson residual. The square root of the contribution of a case to the Pearson
chi-square statistic, with the sign of the raw residual.
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Generalized Estimating Equations Export
Figure 7-13
Generalized Estimating Equations: Export tab

Export model as data. Writes an SPSS Statistics dataset containing the parameter
correlation or covariance matrix with parameter estimates, standard errors, signi cance
values, and degrees of freedom. The order of variables in the matrix le is as follows.

Split variables. If used, any variables de ning splits.
RowType_. Takes values (and value labels) COV (covariances), CORR
(correlations), EST (parameter estimates), SE (standard errors), SIG (signi cance
levels), and DF (sampling design degrees of freedom). There is a separate case
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with row type COV (or CORR) for each model parameter, plus a separate case for
each of the other row types.
VarName_. Takes values P1, P2, ..., corresponding to an ordered list of all
estimated model parameters (except the scale or negative binomial parameters), for
row types COV or CORR, with value labels corresponding to the parameter strings
shown in the Parameter estimates table. The cells are blank for other row types.
P1, P2, ... These variables correspond to an ordered list of all model parameters
(including the scale and negative binomial parameters, as appropriate), with
variable labels corresponding to the parameter strings shown in the Parameter
estimates table, and take values according to the row type.
For redundant parameters, all covariances are set to zero, correlations are set
to the system-missing value; all parameter estimates are set at zero; and all
standard errors, signi cance levels, and residual degrees of freedom are set to the
system-missing value.
For the scale parameter, covariances, correlations, signi cance level and degrees
of freedom are set to the system-missing value. If the scale parameter is estimated
via maximum likelihood, the standard error is given; otherwise it is set to the
system-missing value.
For the negative binomial parameter, covariances, correlations, signi cance level
and degrees of freedom are set to the system-missing value. If the negative
binomial parameter is estimated via maximum likelihood, the standard error is
given; otherwise it is set to the system-missing value.
If there are splits, then the list of parameters must be accumulated across all
splits. In a given split, some parameters may be irrelevant; this is not the same as
redundant. For irrelevant parameters, all covariances or correlations, parameter
estimates, standard errors, signi cance levels, and degrees of freedom are set
to the system-missing value.

You can use this matrix le as the initial values for further model estimation; note that
this le is not immediately usable for further analyses in other procedures that read a
matrix le unless those procedures accept all the row types exported here. Even then,
you should take care that all parameters in this matrix le have the same meaning for
the procedure reading the le.
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Export model as XML. Saves the parameter estimates and the parameter covariance
matrix, if selected, in XML (PMML) format. SmartScore and SPSS Statistics Server
(a separate product) can use this model le to apply the model information to other
data les for scoring purposes.

GENLIN Command Additional Features

The command syntax language also allows you to:
Specify initial values for parameter estimates as a list of numbers (using the
CRITERIA subcommand).
Specify a xed working correlation matrix (using the REPEATED subcommand).
Fix covariates at values other than their means when computing estimated marginal
means (using the EMMEANS subcommand).
Specify custom polynomial contrasts for estimated marginal means (using the
EMMEANS subcommand).
Specify a subset of the factors for which estimated marginal means are displayed
to be compared using the speci ed contrast type (using the TABLES and COMPARE
keywords of the EMMEANS subcommand).

See the Command Syntax Reference for complete syntax information.
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Model Selection Loglinear
Analysis

The Model Selection Loglinear Analysis procedure analyzes multiway crosstabulations
(contingency tables). It ts hierarchical loglinear models to multidimensional
crosstabulations using an iterative proportional- tting algorithm. This procedure helps
you nd out which categorical variables are associated. To build models, forced entry
and backward elimination methods are available. For saturated models, you can
request parameter estimates and tests of partial association. A saturated model adds
0.5 to all cells.

Example. In a study of user preference for one of two laundry detergents, researchers
counted people in each group, combining various categories of water softness (soft,
medium, or hard), previous use of one of the brands, and washing temperature (cold
or hot). They found how temperature is related to water softness and also to brand
preference.

Statistics. Frequencies, residuals, parameter estimates, standard errors, con dence
intervals, and tests of partial association. For custom models, plots of residuals and
normal probability plots.

Data. Factor variables are categorical. All variables to be analyzed must be numeric.
Categorical string variables can be recoded to numeric variables before starting the
model selection analysis.
Avoid specifying many variables with many levels. Such speci cations can lead to

a situation where many cells have small numbers of observations, and the chi-square
values may not be useful.

Related procedures. The Model Selection procedure can help identify the terms
needed in the model. Then you can continue to evaluate the model using General
Loglinear Analysis or Logit Loglinear Analysis. You can use Autorecode to recode
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